

ImmuneDB [image: travisci] [https://travis-ci.org/arosenfeld/immunedb] [image: docs] [https://immunedb.readthedocs.io/en/latest/?badge=latest] [image: codecov] [https://codecov.io/gh/arosenfeld/immunedb] [image: pypi] [https://pypi.python.org/pypi/ImmuneDB] [image: docker] [https://hub.docker.com/r/arosenfeld/immunedb]

ImmuneDB is a database-backed system to analyze and store large amounts
(terabytes) of high-throughput B-cell receptor (BCR) and T-cell receptor (TCR)
data. Although it can be used as a stand-alone package for comprehensive
repertoire profiling, ImmuneDB excels at acting as a central data store and
interface between other tools such as IgBLAST [https://ncbi.github.io/igblast], the Immcantation Framework [http://immcantation.com], MiXCR [https://mixcr.readthedocs.io], and
VDJtools [https://vdjtools-doc.readthedocs.io] via AIRR compliant [http://docs.airr-community.org/en/latest/resources/support.html#rearrangement-schema]
importing and exporting routines.

Feature Highlights

	Relational storage of repertoire data: Sequences, annotations, clones,
lineages, and statistics are all stored in a relational database to
promote consistent formatting and easy querying.

	Consolidated metadata: Custom study, experiment, and replicate metadata
is stored alongside your sequencing data in a non-redundant format to avoid
inconsistencies and errors over the life of your study.

	Web interface: ImmuneDB provides a built-in web interface for interactive
exploration of data.

	Interoperability: With AIRR compliant input and output methods, ImmuneDB
can interface with other software in the AIRR ecosystem. Other output
formats include Change-O and VDJtools.

	Proven reliability: ImmuneDB is used by multiple labs to manage terabytes
of data comprised of billions of sequences in dozens of projects.

Quick Start

To get started immediately, please see the Docker installation
instructions.

Installing with Docker (recommended)

Pulling the Docker Image

With Docker installed, run the following command to pull the newest version of
the ImmuneDB Docker image:

$ docker pull arosenfeld/immunedb:v0.29.9

Running the Container

To start a shell session within the container run:

$ docker run -v $HOME/immunedb_share:/share \
 -p 8080:8080 -it arosenfeld/immunedb:v0.29.9

This will start a shell with ImmuneDB and accessory scripts pre-installed as
well as create a shared directory between the host and Docker container. Files
placed in the host’s $HOME/immunedb_share directory and it will appear in
/share within the Docker container (and vice versa). Note $HOME on
macOS is generally /Users/your_username/ and on Linux it is generally
/home/your_username.

Additionally, MySQL stores its data in /share/mysql_data so databases will
persist across multiple container invocations.

The location of important files are:

	/root/germlines: IMGT aligned germlines for IGH, TCRA, and TCRB.

	/apps/bowtie2/bowtie2: The local-alignment tool Bowtie2. This file is in
the container’s $PATH.

	/share/configs: The recommended directory to store ImmuneDB
configurations generated by immunedb_admin create.

	/share/mysql_data: The location MySQL (specifically MariaDB) will store
its data.

	/example: A set of example input data to familiarize yourself with
ImmuneDB.

Running ImmuneDB

Once the Docker container is running, you should continue by testing out the
example pipeline.

Installing Locally (advanced)

This section details how to set ImmuneDB up locally on a machine. This is a
more complicated process than using the Docker method
but may be useful if you plan on running ImmuneDB remotely on a server rather
than locally.

Dependency Installation

MySQL

ImmuneDB utilizes MySQL [http://mysql.com] as its underlying data store. We
recommend using its drop-in replacement, MariaDB [http://mariadb.org].
Please consult their website and your operating systems package manager for
installation instructions.

R (optional)

Baseline [http://selection.med.yale.edu/baseline] can optionally be used to
calculate selection pressure on clones. This requires R [http://www.r-project.org] to be installed along with the ade4 [http://cran.r-project.org/web/pack:ges/ade4/index.html] package.
Installation is platform dependent.

The newest version of Baseline can be downloaded here [http://selection.med.yale.edu/baseline]. The path to the main script will
be needed for clone statistics generation as described in
Statistics Generation.

For genotyping, TIgGER [http://tigger.readthedocs.io] must also be
installed.

Bowtie2 (optional)

Bowtie2 can be used to locally align sequences
which cannot be aligned using the built-in anchor method.

Clearcut (optional)

Clearcut [http://bioinformatics.hungry.com/clearcut] can be used to generate
lineage trees for clones. After downloading and compiling per the instructions,
note the path to the clearcut executable which will be required for
generating trees in Clone Trees (Optional).

ImmuneDB Installation

It is recommended that ImmuneDB be installed within a venv, creating
an isolated environment from the rest of the system.

To create a virtual environment and activate it run:

$ python3 -m venv immunedb
$ source immunedb/bin/activate

Then install ImmuneDB:

$ pip install immunedb

Web Interface Installation

Please refer to the ImmuneDB Frontend installation instructions [https://github.com/arosenfeld/immunedb-frontend#immunedb-frontend].

Running the Example Pipeline

This page serves to familiarize new users with the basic process of running the
ImmuneDB pipeline. Example input FASTQ files are provided which contain human
B-cell heavy chain sequences.

Commands are listed as either being run in either the Docker container or on
the host. All immunedb_* commands have a --help flag which will show
all arguments and their descriptions. It is recommended for each command you
run the help flag to see options not listed in this documentation.

To begin, run the Docker container as documented:

Run on Host

 $ docker run -v $HOME/immunedb_share:/share \
 -p 8080:8080 -it arosenfeld/immunedb:v0.29.9

Metadata Specification

Before ImmuneDB can be run, metadata must be specified for each input file.
For this example, one has already been created for you. To learn how to create
a metadata file for your own data, see Creating a Metadata Sheet.

ImmuneDB Instance Creation

Next, we create a database for the data with:

Run in Docker

 $ immunedb_admin create example_db /share/configs

This creates a new database named example_db and stores its configuration
in /share/configs/example_db.json.

Identifying or Importing Sequences

Data can be added to the new ImmuneDB database either by importing annotated
sequencing data in AIRR format [http://docs.airr-community.org/en/latest/datarep/rearrangements.html], or
via a built-in gene assignment method based on Zhang, et al., 2015 [https://www.ncbi.nlm.nih.gov/pubmed/26529062].

For this example, there are two input FASTQ files in /example/fastq along
with an associated metadata file. These will be used regardless of the method
you choose. There are also germline files for human and mouse included.

Option 1: Importing from AIRR Files (Recommended)

First, IgBLAST needs to be run on the input files. A small wrapper script is
provided in the Docker container. It takes three parameters: a species, a
locus (in uppercase), an input directory with FASTA/FASTQ files, and an output
directory:

$ run_igblast.sh human IGH /example/fastq /example/airr

To import these files, run the immunedb_import command:

Run in Docker

$ immunedb_import /share/configs/example_db.json airr \
 /root/germlines/igblast/human/IGHV.gapped.fasta \
 /root/germlines/igblast/human/IGHJ.gapped.fasta \
 /example/airr

Option 2: Annotating FASTA/FASTQ Files via Anchoring

Alternatively, if you’d prefer to use the built-in annotation method on
FASTA/FASTQ files, you can use the immunedb_identify command. Note this
method is more sensitive to high mutation rates in the regions flanking the
CDR3.

Run in Docker

 $ immunedb_identify /share/configs/example_db.json \
 /root/germlines/anchor/human/IGHV.gapped.fasta \
 /root/germlines/anchor/human/IGHJ.gapped.fasta \
 /example

Sequence Collapsing

After data are imported or annotated on a sample-level basis, ImmuneDB
determines the subject-level unique sequences; that is, the set of unique
sequences across all samples in each subject. Because sequences may contain
the ambiguous N symbol, the process is not trivial string equality
checking. It is implemented in the immunedb_collapse command.

To collapse sequences, run:

Run in Docker

 $ immunedb_collapse /share/configs/example_db.json

Clonal Assignment

After collapsing unique sequences across each subject they can be grouped into
clones which are aggregations of sequences likely deriving from a common
progenitor cell.

ImmuneDB offers two clonal inference methods, similarity and cluster. The
cluster method is recommended and documented here as it more robust than
similarity.

For both methods, clones are inferred in two steps: grouping sequences and then
merging similar clones. Both steps are run together with the
immunedb_clones command

By default, only sequences with a subject-level copy number greater
than 1 are included in clones. This can be changed with the --min-copy
parameter.

In the first step of clonal inference, sequences meeting the above copy number
criteria are hierarchically clustered together such that any two sequences in a
clone must (1) have the same CDR3 length and (2) share at least 85% amino-acid
similarity in the CDR3. The similarity can be changed with --min-similarity
X parameter where X is the minimum similarity between 0 and 1. If nucleotide
similarity should be used, --level nt can be passed.

Note

For T-cells it is recommended the --min-similarity 1 parameter be set
but the --level parameter by left at the default amino-acid setting.
Using both --min-similarity 1 --level nt may lead to the creation of
spurious clones due to sequencing error. Only pass both if you’re quite
certain your sequencing error has been eliminated (e.g. by barcoding).

After this step is complete, sequences have been assigned to clones. In some
cases clones may have the same CDR3 nucleotide sequence but different gene
calls. This can indeed occur biologically but frequently due to mutation and
sequencing error causing incorrect gene calls.

To rectify this, a second step in clonal inference is to collapse merge clones
that have the same CDR3 nucleotide sequences. In cases where this occurs, the
highest copy clone absorbs the lower copy clones. This second step can be
configured in two ways via the --reduce-difference flag. Setting it to a
negative number (e.g. --reduce-difference -1) disables the step entirely.
Setting it to a positive number (e.g. --reduce-difference 2) will alter the
step’s behavior to combine clones differing by at most that number of
nucleotides. The default value is 0, so only clones with exactly the same CDR3
nucleotide sequences will be combined.

Run in Docker

 $ immunedb_clones /share/configs/example_db.json cluster

Statistics Generation

Two sets of statistics can be calculated in ImmuneDB:

	Clone Statistics: For each clone and sample combination, statistics on
the clone’s size, mutation level, and top copy sequence

	Sample Statistics: Distribution of sequence and clone features on a
per-sample basis, including gene usage, mutation level, copy number, CDR3
length.

These are calculated with the immunedb_clone_stats and immunedb_sample_stats
commands and must be run in that order.

Run in Docker

 $ immunedb_clone_stats /share/configs/example_db.json
 $ immunedb_sample_stats /share/configs/example_db.json

Selection Pressure (Optional)

Warning

Selection pressure calculations are time-consuming, so you can skip this
step if time is limited.

Selection pressure of clones can be calculated with Baseline [http://selection.med.yale.edu/baseline/Archive]. To do so run:

Run in Docker

 $ immunedb_clone_pressure /share/configs/example_db.json \
 /apps/baseline/Baseline_Main.r

Note, this process is relatively slow and may take some time to complete.

Clone Trees (Optional)

Lineage trees for clones is generated with the immunedb_clone_trees
command. The only currently supported method is neighbor-joining as provided
by Clearcut [http://bioinformatics.hungry.com/clearcut].

There are many parameters that can be changed for tree construction:

	--min-seq-copies (default 0): The minimum number copy number required for
a sequence to be included in the tree.

	--min-seq-samples (default 0): The minimum number samples in which a
sequence must appear for it to be included in the tree.

	--min-mut-copies (default 0): The minimum number of copies in which a
mutation must occur to be included in the tree.

	--min-mut-samples (default 0): The minimum number of samples in which a
mutation must occur to be included in the tree.

	--exclude-stops (default False): Exclude sequences with a stop codon.

	--full-seq (default False): By default only the V-region of each
sequence (the portion 5’ of the CDR3) is included in the tree construction.
Setting this flag will use the entire sequence.

Generally we recommend using --min-seq-copies 2.

Run in Docker

 $ immunedb_clone_trees /share/configs/example_db.json --min-seq-copies 2

Web Interface

ImmuneDB has a web interface to interact with a database instance. The Docker
container automatically makes this available at
http://localhost:8080/frontend/example_db

When you create more databases, simply replace example_db with the proper
database name.

Next Steps

Now that the basic workflow has been covered, instructions to run ImmuneDB on
your own data can be found at Running the Pipeline on Your Data.

Running the Pipeline on Your Data

This page describes how to run the ImmuneDB pipeline on your own BCR/TCR data.
It is assumed that you’ve previously tried the example pipeline and understand the basics of running commands in the Docker
container.

Like in the example, each code block has a header saying if the command should
be run on the host or in the Docker container.

Copying Your Sequence Data Into Docker

Unlike in the example pipeline where sequencing data
was provided, you’ll need to copy your own FASTA/FASTQ sequencing data or
AIRR-formatted IgBLAST output into the Docker container.

To do so, on the host, we create a new directory in the shared directory
into which we’ll copy your sequencing data. Here we’re calling it
sequences but you’ll probably want to choose a more descriptive name.
Replace PATH_TO_SEQUENCES with the path to your sequencing data.

Run on Host

$ mkdir -p $HOME/immunedb_share/input
$ cp PATH_TO_SEQUENCES $HOME/immunedb_share/input

Running IgBLAST (optional)

Note

If your data is already in AIRR-compliant IgBLAST format or you are
planning on using the built in anchoring method, you can skip this step.

The following command will run IgBLAST on your files. Valid values for species
and locus are:

	SPECIES:human, mouse

	LOCUS: IGH, IGL, IGK, TRA, TRB,

$ run_igblast.sh SPECIES LOCUS /share/input /share/input

For consistency with the commands in the rest of this tutorial, we’ll move the
new IgBLAST output files to /share/input and move the FASTA/FASTQ files to
/share/sequences.

$ mkdir -p /share/sequences
$ mv /share/input/*.fast[aq] /share/sequences

Creating a Metadata Sheet

Next, we’ll use the immunedb_metadata command to create a template metadata
file for your sequencing data. In the Docker container run:

Run in Docker

$ cd /share/input
$ immunedb_metadata --use-filenames

Note

This command expects the files to end in .fasta for FASTA, .fastq for
FASTQ, or .tsv for AIRR.

This creates a metadata.tsv file in /share/input in Docker which is
linked to $HOME/immunedb_share/input on the host.

The --use-filenames flag is optional, and simply populates the
sample_name field with the file names stripped of their extension.

Editing the Metadata Sheet

On the host open the metadata file in Excel or your favorite spreadsheet
editor. The headers included in the file are required. You may add
additional headers as necessary for your dataset (e.g. tissue,
cell_subset, timepoint) so long as they follow the following rules:

	The headers must all be unique

	Each header may only contain lowercase letters, numbers, and underscores

	Each header must begin with a (lowercase) character

	Each header must not exceed 32 characters in length

	The values within each column cannot exceed 64 characters in length

Note

When data is missing or not necessary in a field, leave it blank or set to
NA, N/A, NULL, or None (case-insensitive).

Pipeline Steps

Much of the rest of the pipeline follows from the example pipeline’s
instance creation step. To start, create a
database. Here we’ll call it my_db but you’ll probably want to give it a
more descriptive name:

Run in Docker

$ immunedb_admin create my_db /share/configs

Then we’ll identify or import the sequences. For this process the germline
genes must be specified. The germlines are provided FASTA files in the Docker
image at /root/germlines.

Note

You can use your own germline files if you desire so long as they are IMGT
gapped.

For this segment we’ll assume human B-cell heavy chains, but the process is the
same for any dataset. Depending on if you want to use IgBLAST input
(recommended) or the built-in annotation method the command will be one of the
following:

Option 1: Importing from IgBLAST output (recommended):

Run in Docker

$ immunedb_import /share/configs/example_db.json airr \
 /root/germlines/igblast/human/IGHV.gapped.fasta \
 /root/germlines/igblast/human/IGHJ.gapped.fasta \
 /share/input

Option 2: Using anchoring method:

Run in Docker

$ immunedb_identify /share/configs/my_db.json \
 /root/germlines/anchor/human/IGHV.gapped.fasta \
 /root/germlines/anchor/human/IGHJ.gapped.fasta \
 /share/input

After importing or identifying sequences, continue running the pipeline from
here:

Run in Docker

$ immunedb_collapse /share/configs/my_db.json

Then we assign clones. For B-cells we recommend:

Run in Docker

$ immunedb_clones /share/configs/my_db.json cluster

For T-cells we recommend:

Run in Docker

$ immunedb_clones /share/configs/my_db.json cluster --min-similarity 1

If you have a mixed dataset, you can assign clones in different ways, filtering
on V-gene type. For example:

Run in Docker

$ immunedb_clones /share/configs/my_db.json cluster --gene IGHV
$ immunedb_clones /share/configs/my_db.json cluster --gene TCRB \
 --min-similarity 1

The last required step is to generate aggregate statistics:

Run in Docker

 $ immunedb_clone_stats /share/configs/my_db.json
 $ immunedb_sample_stats /share/configs/my_db.json

For B-cells, you might want to generate lineages too. The following excludes
mutations that only occur once. immunedb_clone_trees has many other
parameters for filtering which you can view with the --help flag or at
Clone Trees (Optional).

Run in Docker

 $ immunedb_clone_trees /share/configs/my_db.json --min-seq-copies 2

Selection pressure can be run with the following. This process is quite
time-consuming, even for small datasets:

Run in Docker

 $ immunedb_clone_pressure /share/configs/my_db.json \
 /apps/baseline/Baseline_Main.r

Finally, the data should be available at http://localhost:8080/frontend/my_db.

Analyzing Your Data

After all the above steps are complete, you should have a fully populated
database, ready for analysis via Exporting Data to Files, Querying with SQL, and the
Python API.

Modifying the Database

Databases can be modified in various ways using the immunedb_modify
command.

Appending New Data

Adding new samples to a database is simply running the steps in
Running the Pipeline on Your Data just on the new FASTA/FASTQ or AIRR files. Effort has
been made to reduce the amount of information that needs to be recomputed when
samples are added. However, after new samples are added all affected subjects
will be entirely re-collapsed and clones will be recalculated.

Changing Metadata

Metadata specified when initially populating ImmuneDB via importing or
identification can be updated in two steps. First, export the metadata
currently in the database with:

$ immunedb_export PATH_TO_CONFIG samples --for-update

This will generate a samples.tsv file which can by modified. Headers and
values can be changed, deleted, or added.

Note

Note that changing the subject of any sample will require steps after and
including immunedb_collapse to be re-run.

After modifying the metadata, update the database with:

$ immunedb_modify PATH_TO_CONFIG update-metadata samples.tsv

Combining Samples

Warning

You cannot collapse samples from multiple subjects. If that functionality
is desired, first modify the metadata to set the subject for each sample to
be the same with update-metadata, and then run combine-samples.

One assumption ImmuneDB makes is that each sample is a biological replicate
in that no one cell has its BCR/TCR sequence in more than one sample. If you
have technical replicates, multiple independent sequencing runs of the same
same biological replicate, they should be combined into one ImmuneDB-sample
each. To do so, add a metadata field to the database as described in
Changing Metadata where all technical replicates from the same
biological replicate have the same value.

For example, if we have the following samples where each sample has two
technical replicates:

	sample

	subject

	biorep1_techrep1

	S1

	biorep1_techrep2

	S1

	biorep2_techrep1

	S1

	biorep2_techrep2

	S1

You would update the metadata to be:

	sample

	subject

	collapse

	biorep1_techrep1

	S1

	first_sample

	biorep1_techrep2

	S1

	first_sample

	biorep2_techrep1

	S1

	second_sample

	biorep2_techrep2

	S1

	second_sample

And then run:

$ immunedb_modify PATH_TO_CONFIG combine-samples collapse

This will result in the four replicates being collapsed into two, using the
collapse field as the new name for each:

	sample

	subject

	first_sample

	S1

	second_sample

	S1

Note the header collapse can have any value you want so long as it’s passed
to immunedb_modify. Further, the values in that column can be arbitrary
but will be used as the new name of the samples after collapsing.

Deleting Samples

The following command can be used to delete samples by ID:

$ immunedb_modify PATH_TO_CONFIG delete-samples [sample_ids]

Note that deleting samples will require the subject to be re-analyzed by
running all pipeline steps after and including immunedb_collapse.

Running in the Background

After you have populated your ImmuneDB database(s), you may want to leave the
frontend web service running in the background. To do so, you can start
ImmuneDB in detached mode with the following:

$ docker run -v $HOME/immunedb_share:/share \
 -p 8080:8080 -e IMMUNEDB_DAEMON=1 -d=true \
 arosenfeld/immunedb:v0.29.9

If you want to stop the process in the future, get its process ID with

$ docker ps

And then run:

$ docker stop ID

Exporting Data to Files

You can use the immunedb_export command to export your data in a variety of
formats.

Exporting Samples

To export samples statistics run the command:

$ immunedb_export PATH_TO_CONFIG samples

After completion, a TSV file samples.tsv will be written with the following
headers, one line per sample:

	Field

	Description

	id

	Unique numeric sample identifier

	name

	Name given to the sample

	subject

	Subject from which the sample originated

	input_sequences

	Reads input into ImmuneDB

	identified

	Reads successfully annotated

	in_frame

	Reads in-frame

	stops

	Reads with stop codons

	functional

	Functional reads (in-frame and no stop codons)

	avg_clone_cdr3_num_nts

	Average clonal CDR3 length in nucleotides

	avg_clone_v_identity

	Average clonal V-region identity

	clones

	Total number of clones

Exporting Clones

In it’s most basic form, the command to export clones is:

$ immunedb_export PATH_TO_CONFIG clones

This will generate one file per sample each with one line per clone having the
fields below. Note that intances, copies, avg_v_identity, and
top_copy_seq are for the clone in the context of that sample. That is,
those fields may vary for the same clone in different samples.

	Field

	Description

	clone_id

	Database-wide unique clone identifier. This
number can be used to track clones across samples.

	subject

	Subject in which the clone was found

	v_gene

	V-gene of the clone

	j_gene

	J-gene of the clone

	functional

	If the clone is in-frame and contains no stop
in the consensus (T or F)

	insertions

	Insertions in the clone (deprecated)

	deletions

	Deletions in the clone (deprecated)

	cdr3_nt

	CDR3 nucleotide sequence

	cdr3_num_nts

	CDR3 nucleotide sequence length

	cdr3_aa

	CDR3 amino-acid sequence

	uniques

	Unique sequences in the clone overall

	instances

	Sequences instances in the clone in the
associated sample

	copies

	Copies in the clone in the associated sample

	germline

	Clonal germline sequence

	parent_id

	Parent ID (deprecated)

	avg_v_identity

	Average V-gene identity to germline

	top_copy_seq

	Nucleotide sequence of top-copy sequence

The --pool-on parameter can be used to change how data is aggregated. By
default it takes the value sample (as described above) but it also accepts,
subject, or any custom metadata field(s).

For the purposes of illustration, assume we have samples with the associated
metadata below.

	sample

	subject

	tissue

	subset

	sample1

	S1

	blood

	naive

	sample2

	S1

	spleen

	naive

	sample3

	S1

	spleen

	mature

	sample4

	S3

	blood

	native

Passing --pool-on subject will generate one file per subject with the clone
information aggregated across all samples in that subject. Alternatively,
passing --pool-on tissue will generate one file per subject/tissue
combination. You can pass multiple metadata fields to the --pool-on
parameter as well. For example --pool-on tissue subset will generate one
file per subject/tissue/subset combination.

Two other common parameters are --sample-ids which restricts which samples
to include in the export and --format which accepts immunedb (the
default) or vdjtools for interoperability with the VDJtools suite [https://vdjtools-doc.readthedocs.io].

Exporting Sequences

Sequences can be exported in Change-O [https://changeo.readthedocs.io/en/stable/standard.html] and AIRR [http://docs.airr-community.org/en/latest/datarep/rearrangements.html]
formats.

The basic command is:

$ immunedb_export PATH_TO_CONFIG sequences

This will generate one file per sample in Change-O format. To use AIRR format,
specify --format airr. You can filter out sequences that were not
assigned to a clone with the --clones-only flag.

Exporting Selection Pressure

If selection pressure was calculated with the immunedb_clone_pressure
command, the results can be exported in TSV format, one row per clone/sample
combination. Additionally, unless the --filter samples is passed, there
will be one additional row per clone with a All Samples value for the
sample which indicates the overall selection pressure on the clone.

For more information on interpreting the values see Uduman, et al, 2011 [https://www.ncbi.nlm.nih.gov/pubmed/21665923] and Yaari, et al. 2012 [https://www.ncbi.nlm.nih.gov/pubmed/22641856].

	Field

	Value

	clone_id

	Clone ID

	subject

	Subject to which the clone belongs

	sample

	Sample within which the selection pressure was
calculated. If All Samples the overall selection
pressure for the clone.

	threshold

	The threshold at which the selection pressure was
calculated

	expected_REGION_TYPE

	The expected number of TYPE (r or s)
mutations in REGION (cdr or fwr)

	observed_REGION_TYPE

	The observed number of TYPE (r or s)
mutations in REGION (cdr or fwr)

	sigma_REGION

	The selection pressure in REGION

	sigma_REGION_cilower

	The lower bound of the confidence interval of
selection in REGION

	sigma_REGION_ciupper

	The upper bound of the confidence interval of
selection in REGION

	sigma_p_REGION

	The P-value of the selection in REGION

Exporting MySQL Data

The final method of exporting data is to dump the entire MySQL database to a
file. This is meant to be a backup method rather than for downstream-analysis.

To backup run:

$ immunedb_admin backup PATH_TO_CONFIG BACKUP_PATH

To restore a backup run:

$ immunedb_admin restore PATH_TO_CONFIG BACKUP_PATH

Querying with SQL

ImmuneDB is backed by a MySQL database that can be queried directly to gather
information, bypassing the Python API.

Accessing the Database

There are many ways to access the database directly. The two introduced here
are directly through MySQL or using immunedb_sql which simply wraps a call to
MySQL.

With the immunedb_sql wrapper (recommended)

$ immunedb_sql PATH_TO_CONFIG

This is entirely equivalent to using mysql and will drop to the MySQL
interpreter. You can also pass a query directly from the command line. For
example:

$ immunedb_sql PATH_TO_CONFIG --query 'select * from samples'

Directly with MySQL

From the command line, you may access an ImmuneDB database DATABASE from user
USERNAME with:

$ mysql -u USERNAME -p DATABASE

This will prompt for a password and then to the database. This method of access
is useful for quickly querying the database. To save results of a query
QUERY run the command:

$ mysql -u USERNAME -p DATABASE -e "QUERY" > output

Python API

Note

This section is currently incomplete. We’re working to fill out the
details of the Python API as soon as possible.

Configuration

The immunedb.common.config module provides methods to initialize a
connection to a new or existing database.

Most programs using ImmuneDB will start with code similar to:

import immunedb.common.config as config

parser = config.get_base_arg_parser('Some description of the program')
... add any additional arguments to the parser ...
args = parser.parse_args()

session = config.init_db(args.db_config)

When this script is run, it will require at least one argument which is the
path to a database configuration (as generated with immunedb_admin). Using
that, a Session object will be made, connected to the associated database.

One can also directly specify the path to a configuration directly.

import immunedb.common.config as config

session = config.init_db('path/to/config')

Alternatively a dictionary with the same information can be passed:

import immunedb.common.config as config

session = config.init_db({
 'host': '...',
 'database': '...',
 'username': '...',
 'password': '...',
})

Returned will be a Session object which can be used to interact with the
database.

Using the Session

ImmuneDB is built using SQLAlchemy [http://sqlalchemy.org] as a MySQL
abstraction layer. Simply put, instead of writing SQL, the database is queried
using Python constructs. Full documentation on using the session can be found
in SQLAlchemy’s documentation [http://docs.sqlalchemy.org/en/latest/orm/session.html].

Once a session is created, the models listed below can be queried.

Example Queries

Below are some example queries that demonstrate how to use the ImmuneDB API.

Clone CDR3s

Get all clones with a given V-gene and print their CDR3 AA
sequences.

Input

import immunedb.common.config as config
from immunedb.common.models import Clone

session = config.init_db(...)

for clone in session.query(Clone).filter(Clone.v_gene == 'IGHV3-30'):
 print('clone {} has AAs {}'.format(clone.id, clone.cdr3_aa))

Output

clone 37884 has AAs CARGYSSSYFDYW
clone 37886 has AAs CARSRTSLSIYGVVPTGDFDSW
clone 37885 has AAs CARNGLNTVSGVVISPKYWLDPW
clone 37887 has AAs CARDLFRGVDFYYYGMDVW

Clone Frequency

Determine how many sequences appear in each sample belonging to clone 1234.

Note the CloneStats model has one entry for each clone/sample combination
plus one where the sample_id field is null which represents the overall
clone.

Input

import immunedb.common.config as config
from immunedb.common.models import CloneStats

session = config.init_db(...)
for stat in session.query(CloneStats).filter(
 CloneStats.clone_id == 1234).order_by(CloneStats.sample_id):
 print('clone {} has {} unique sequences and {} copies {}'.format(
 stat.clone_id,
 stat.unique_cnt,
 stat.total_cnt,
 ('in sample ' + stat.sample.name) if stat.sample else 'overall'))

Output

clone 1234 has 53 unique sequences and 1331 copies overall
clone 1234 has 27 unique sequences and 379 copies in sample sample1
clone 1234 has 27 unique sequences and 339 copies in sample sample3
clone 1234 has 24 unique sequences and 311 copies in sample sample4
clone 1234 has 28 unique sequences and 302 copies in sample sample10

V-gene Usage

This is a more complex query which gathers the V-gene usage of all sequences
which are (a) in subject with ID 1, (b) associated with a clone, and (c) are
unique to the subject, printing them from least to most frequent.

Input

import immunedb.common.config as config
from immunedb.common.models import Sequence, SequenceCollapse

session = config.init_db(...)

subject_unique_seqs = session.query(
 func.count(Sequence.seq_id).label('count'),
 Sequence.v_gene
).join(
 SequenceCollapse
).filter(
 Sequence.subject_id == 1,
 ~Sequence.clone_id.is_(None),
 SequenceCollapse.copy_number_in_subject > 0
).group_by(
 Sequence.v_gene
).order_by(
 'count'
)

for seq in subject_unique_seqs:
 print(seq.v_gene, seq.count)

Output

... output truncated ...
IGHV4-34 1128
IGHV1-2 1160
IGHV3-48 1169
IGHV4-39 1310
IGHV3-7 1345
IGHV3-30|3-30-5|3-33 1607
IGHV3-23|3-23D 1626
IGHV3-21 1878

Data Models

Referencing ImmuneDB

If you use ImmuneDB, please cite the tool as:

Rosenfeld, A. M., Meng, W., Luning Prak, E. T., Hershberg, U., ImmuneDB, a
Novel Tool for the Analysis, Storage, and Dissemination of Immune Repertoire
Sequencing Data. Frontiers in Immunology 9 (2018).

ImmuneDB was originally announced previously in:

Rosenfeld, A. M., Meng, W., Luning Prak, E. T., Hershberg, U.,
ImmuneDB: a system for the analysis and exploration of high-throughput
adaptive immune receptor sequencing data, Bioinformatics 33 (2016), no. 2,
292–293.

Related Publications

Rosenfeld, A.M., Meng, W., Chen, D.Y., Zhang, B., Granot, T.,
Farber, D.L., Hershberg, U., and Prak, E.T.L., Computational Evaluation of
B-Cell Clone Sizes in Bulk Populations. Frontiers in Immunology 9 (2018).

Vander Heiden, J.A., Marquez, S., Marthandan, N., Bukhari, S.A.C., Busse, C.
E., Corrie, B., Hershberg, U., Kleinstein, S.H., Matsen, F.A., Ralph, D.K.,
Rosenfeld, A.M., Schramm, C.A., Christley, S., and Laserson, U., AIRR Community
Standardized Representations for Annotated Immune Repertoires. Frontiers in
Immunology 9 (2018).

Zhang, B., Meng, W., Luning Prak, E.T. and
Hershberg U. (2015) Discrimination of germline V genes at different
sequencing lengths and mutational burdens: A new tool for identifying and
evaluating the reliability of V gene assignment. Journal of Immunological
Methods 427: 105-116

Index

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 ImmuneDB

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

